Centers for Random Walks on Trees

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Centers for Random Walks on Trees

We consider two distinct centers which arise in measuring how quickly a random walk on a tree mixes. Lovász and Winkler [8] point out that stopping rules which “look where they are going” (rather than simply walking a fixed number of steps) can achieve a desired distribution exactly and efficiently. Considering an optimal stopping rule that reflects some aspect of mixing, we can use the expecte...

متن کامل

Random walks on complex trees.

We study the properties of random walks on complex trees. We observe that the absence of loops is reflected in physical observables showing large differences with respect to their looped counterparts. First, both the vertex discovery rate and the mean topological displacement from the origin present a considerable slowing down in the tree case. Second, the mean first passage time (MFPT) display...

متن کامل

Random Walks on Rooted Trees

For arbitrary positive integers h and m, we consider the family of all rooted trees of height h having exactly m vertices at distance h from the root. We refer to such trees as (h,m)-trees. For a tree T from this family, we consider a simple random walk on T which starts at the root and terminates when it visits one of the m vertices at distance h from the root. Consider the problem of finding ...

متن کامل

Random Walks and Trees

These notes provide an elementary and self-contained introduction to branching random walks. Section 1 gives a brief overview of Galton–Watson trees, whereas Section 2 presents the classical law of large numbers for branching random walks. These two short sections are not exactly indispensable, but they introduce the idea of using size-biased trees, thus giving motivations and an avant-goût to ...

متن کامل

Random Walks & Trees

Preface These notes provide an elementary and self-contained introduction to branching random walks. Chapter 1 gives a brief overview of Galton–Watson trees, whereas Chapter 2 presents the classical law of large numbers for branching random walks. These two short chapters are not exactly indispensable, but they introduce the idea of using size-biased trees, thus giving motivations and an avant-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Discrete Mathematics

سال: 2009

ISSN: 0895-4801,1095-7146

DOI: 10.1137/070687402